Dimensionality Reduction via Program Induction

نویسندگان

  • Kevin Ellis
  • Joshua B. Tenenbaum
چکیده

How can techniques drawn from machine learning be applied to the learning of structured, compositional representations? In this work, we adopt functional programs as our representation, and cast the problem of learning symbolic representations as a symbolic analog of dimensionality reduction. By placing program synthesis within a probabilistic machine learning framework, we are able to model the learning of some English inflectional morphology and solve a set of synthetic regression problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Through Non-linearly Supervised Dimensionality Reduction

Dimensionality reduction is a crucial ingredient of machine learning and data mining, boosting classification accuracy through the isolation of patterns via omission of noise. Nevertheless, recent studies have shown that dimensionality reduction can benefit from label information, via a joint estimation of predictors and target variables from a low-rank representation. In the light of such insp...

متن کامل

Diagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms

Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...

متن کامل

Supervised Dimensionality Reduction via Nonlinear Target Estimation

Dimensionality reduction is a crucial ingredient of machine learning and data mining, boosting classification accuracy through the isolation of patterns via omission of noise. Nevertheless, recent studies have shown that dimensionality reduction can benefit from label information, via a joint estimation of predictors and target variables from a low-rank representation. In the light of such insp...

متن کامل

DROP: Dimensionality Reduction Optimization for Time Series

Dimensionality reduction is a critical step in analytics pipelines for high-volume, high-dimensional time series. Principal Component Analysis (PCA) is frequently the method of choice for many applications, yet is often prohibitively expensive for large datasets. Many theoretical means of accelerating PCA via sampling have recently been proposed, but these techniques typically treat PCA as a re...

متن کامل

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013